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Abstract: De-novo drug design (DND) is a complex procedure, requiring the satisfaction of many pharmaceutically 

important objectives. Several computational methodologies employing various optimization approaches have been 

developed to search for satisfactory solutions to this multi-objective problem varying from composite methods, which 

transform the problem to a single objective one to Pareto methods searching for numerous solutions compromising the 

objectives. In this review we initially focus on the DND problem and the challenges it poses to computational methods, 

followed by an examination of the reported methodologies and specific applications. Emphasis is placed on the multi-

objective nature of the problem, related considerations and the solutions proposed by the drug discovery community.  
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1. INTRODUCTION 

 De-novo drug (or ligand) design (DND) attempts to 
generate ligands from scratch based only on information 
about the pharmaceutical target site or known ligands [1]. 
The design products need to satisfy a number of objectives 
of crucial pharmaceutical importance. Among them is 
biological activity against the target of interest, selectivity to 
the specific target and a number of pharmacokinetic 
properties collectively known as ADME (Absorption, 
Distribution, Metabolism, Excretion) [2]. The multitude of 
design constraints turn DND into a multi-objective 
optimization problem of significant complexity, but also 
importance [3], since the method can potentially produce 
novel chemical designs representing a wide range of 
compromises of the supplied constraints and may therefore 
be used as an “idea generator” to support the lead discovery 
process.  

 The task faced by optimization methods used in the DND 
field is that of exploring a chemical search space consisting 
of all possible chemical compounds with drug-like 
characteristics and, identifying those that satisfy the specific 
problem constraints imposed. The size of this space makes a 
full enumeration impossible and so powerful search methods 
need to be applied to detect the best possible solutions in a 
limited amount of time. In addition to searching an immense, 
complex space for solutions satisfying multiple, often 
conflicting objectives, DND methods need to implement 
virtual synthesis engines that produce chemically 
synthesizable structures, a task that has proven challenging 
to this day [4].  
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 In the following sections an overview of the de novo 
design field is given placing special emphasis on multi-
objective methods. Section 2 describes the main challenges 
and considerations DND methods need to deal with. Section 
3 reviews the algorithmic approaches used by the DND 
community to address the presence of multiple objectives in 
the process. The next section briefly presents applications 
using single-objective optimization approaches while section 
5 describes in detail multi-objective methods of various 
types. The final section summarizes our conclusions on the 
progress performed in the DND field and suggests directions 
for future research. 

2. DND METHOD CHALLENGES AND CONSI-

DERATIONS  

 The main challenges facing any method attempting to 
identify solutions to a given problem include representing 
the problem accurately, generating valid candidate solutions 
from the feasible solution space and assessing the quality of 
the proposed solutions. Satisfying these requirements in the 
DND setting requires, among others, the encoding of 
pharmaceutically relevant chemical structure assessment 
methods, the implementation of a virtual chemical structure 
generation engine, and the usage of an optimization method 
for exploring the chemical search space of interest. Fig. (1) 
presents the major steps of a traditional de novo design 
process. 

 Chemical structure assessment traditionally involved the 
calculation of the similarity of a structure to a known drug 
[5] or the prediction of its binding affinity to a 
pharmaceutical target receptor [6]. These types of scoring 
over-emphasized the biological activity potential of a 
structure and ignored the multitude of additional constraints 
necessary for a compound to become a drug. The advent of 
chemoinformatics in the last two decades has provided 
computational methods for the calculation of numerous 
compound properties including drug-likeness [7], ADME 
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Fig. (1). General diagram of the de novo drug design process. 

and toxicity properties [3] which can readily be used in a 
search procedure initiated as part of a de novo design effort 
[8]. Table 1 summarizes the various chemical structure 
scoring methods.  

 Ideally, the generation of chemical structures in silico 
requires putting together compound designs that not only 
satisfy chemical rules (e.g. correct valences, molecular 
stability) but are also synthesizable. DND algorithms 
proposed in the literature typically use a predefined 
collection of molecular fragments as building blocks and a 
set of synthesis rules to increase the synthetic feasibility 
potential of the designed chemical structures [4]. Often, the 
molecular fragments are extracted through the fragmentation 
of a collection of molecules from a given database [9] 
although some methods also use simple atoms and bonds 
[10]. Optionally, information on reaction points of the 
fragments is also kept. The virtual synthesis of molecules 
needs to produce acceptable chemical designs by combining 
in an intelligent manner available building blocks selected in 

a random fashion, or with a probabilistic bias based on the 
frequency of occurrence of each fragment.  

 The ability to design virtual compounds and score them 
against a number of pharmaceutically relevant objectives 
enables the implementation of de novo design techniques 
aiming to generate chemical structures occupying a specific 
region of the chemical space and, possessing a desirable 
biological profile. To this end, a number of optimization 
algorithms have been used including monte carlo [11, 12], 
graph search [13] and, overwhelmingly in recent years, 
evolutionary algorithms (EA) [8, 14]. It is worth stressing 
the size and complexity of the chemical search space DND 
methods have to explore. Bohacek et al. estimated the size of 
the space to be in the order of 10

60
 [15] while Reymond et al. 

[16] have introduced a global chemical universe database, 
the GDB, which enumerates actual lists of all molecules that 
are possible up to a certain size following simple constraints 
of chemical stability and synthetic feasibility. The group has 
published GDB-11, an enumeration of all molecules up to 11 

Table 1.  Chemical Structure Assessment Categories 

DND Objective Categories 

Ligand-based Receptor-based Property-based 

  

Lipinski properties (MW, logP, number of H-

bond donors/acceptors) 

 

Selectivity 

 

Polar surface area, pKa 

etc 

Score is based on the chemical similarity of the 

designed compounds to a known active molecule. 

Anticancer agent Imatinib is shown as an example of 

a known active molecule 

Score is based on the predicted binding 

affinity of the designed compounds to a 

known pharmaceutical receptor. 

The docked structure of Imatinib (stick 

representation) at the active site of kinase 

AbI (surface representation is shown as an 

example 

Score is based on calculated pharmaceutically 

relevant property(ies) such as Lipinski’s 

properties, selectivity to the target of interest 

and ADME properties 
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atoms with C, N, O, F that has approximately 26.4 million 
compounds and GDB-13 with atoms C, N, O, Cl, S that has 
about 980 million compounds [16]. Moreover, the presence 
of multiple conflicting objectives results in a complex, non-
uniform search space since multiple, equivalent solutions 
may be present at different regions of the space [1]. Equally 
significant is that many objective functions used in DND are 
not very precise and therefore the demand for optimality to 
these objectives may result in noisy solution spaces and 
increased risk of excluding valid solutions. It is therefore 
apparent that any optimization method used needs to 
combine efficiency with robustness to complex multimodal 
search spaces typical in real-life multi-objective problems. 

3. HANDLING THE MULTI-OBJECTIVE NATURE 

OF DND  

 In a multi-objective problem, multiple equivalent 
solutions representing different compromises among the 
objectives are possible [8]. This is especially true when the 
objectives considered are in conflict, e.g. when improving 
performance on one objective tends to worsen performance 
in another. These multiple ‘best’ solutions, known as non-
dominated, have no other solutions that are better than them 
in all of the objectives considered. Solutions are said to be 
dominated if there exist one or more solutions in the set that 
exhibit better performance in all objectives. The set of non-
dominated solutions is also known as the tradeoff surface or 
the Pareto front named after the engineer/economist V. 
Pareto who introduced the domination concept. Fig. (2) 
illustrates the concept of nondominated solutions and the 
Pareto front.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). A bi-objective minimization problem and a set of solutions 

(circles). Non-dominated solutions are labeled ‘0’. Multiple 

equivalent ‘best’ solutions are possible in multi-objective problems 

representing different compromises between the considered 

objectives. The solutions form the so-called Pareto front or trade-

off . 

 In an attempt to simplify the problem, most de novo 
design methods ignore the multi-objective nature of drug 
discovery and focus on designing molecules satisfying a 
single objective, either predicted binding affinity to a known 
protein target [17] or, similarity to a ligand [9, 18], A second 
category of methods recognizes the existence of multiple 
objectives in drug discovery and attempts to take them into 
account in the design process. In addition to protein-ligand 
docking score and similarity to a target molecule, fitness 
scores based on Quantitative Structure Activity Relationship 
(QSAR) functions [19], drug-likeness [20] and experiments 
[21] can also be used. The majority of multi-objective 
methods combine the numerous objectives into a single one 
prior to the application of an optimization method. These 
methods effectively decide a  priori on the relative 
importance of each existing objective, often by associating a 
weight to each one of them, to generate a new, composite 
objective. Alternatively, some methods follow a different 
approach and strive to identify chemical structure solutions 
covering the Pareto front of the specific problem 
investigated. These Pareto optimization based approaches 
produce sets of solutions that represent different 
compromises of the objectives and allow the user to choose 
those that better match their goals. While this may be 
perceived as a problem, the availability of several candidate 
solutions in reality enables users to choose a  posteriori those 
that meet their criteria best. Specifically in DND, the 
generation of multiple equivalent diverse end-product 
solutions is in fact preferable since it provides experts with 
numerous, alternative starting points for the lead 
optimization phase. In addition, this approach does not 
require the (often) artificial assigning of weights on the 
various objectives. A more recent method that follows the 
composite approach to multi-objective optimization uses 
desirability functions where a global desirability index for 
each candidate solution is obtained from the individual 
compound objectives [22]. Finally, some methods provide a 
progressive, user-directed de novo design approach where 
chemical intuition [23] is used as the fitness function with 
users interactively evaluating generated molecules. 

 Among the most commonly used optimization methods 
in DND are Evolutionary Algorithms (EA). These 
techniques follow the concepts of Darwinian evolution to 
gradually design a fit population of individuals subject to 
environmental pressure. EA based DND methods start with 
an initial population of small molecules and iteratively build 
new, more ‘fit’ compounds based on the fitness score of the 
previous set of molecules through modifications mimicking 
natural breeding (i.e. crossover operations) and mutations 
[1]. Since EA’s simultaneously optimize a population of 
individuals during search they are particularly suitable for 
multi-objective problems where a set of solutions that covers 
the Pareto front needs to be found. Consequently, the 
preservation of population diversity is a major issue in multi-
objective EA and has recently been attracting attention in the 
context of DND as well [1, 24].  

 Also popular, especially in early DND methods, are 
graph-based combinatorial search approaches that explore 
the solution space using techniques such as breadth- or 
depth-first search to generate chemical designs meeting the 
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constraints imposed [4]. In DND, these approaches use a set 
of fragments with given connection points and combine them 
to form new chemical designs. The combination of the 
fragments takes place by successively enumerating the 
possible attachments to other fragments at each connection 
point and retaining the best performer(s). Depending on the 
search technique used new structures can be gradually 
‘grown’ from initial fragments or ‘linked’ by first selecting 
promising fragments and then connecting them with ‘linker’ 
fragments.  

 There exist numerous reviews on DND methods and 
applications. The interested reader is referred to [25], [26] 
and [27]. Reviews for older methodologies can be found in 
[4] and [28]. In the following sections we describe a 
selection from the methods proposed in the literature with 
emphasis on recent applications and Pareto-based 
approaches. The presentation of the methods is organized 
with respect to the general methodology followed to address 
the multiple objectives involved in drug discovery.  

4. SINGLE OBJECTIVE DND METHODS 

 The majority of DND approaches reported in the 
literature ignore the presence of multiple objectives in the 
pharmaceutical process and focus on optimizing a potency 
related objective. Broadly, methods following this approach 
fall into two categories depending whether the objective 
pursued is ligand or target-based. 

 Ligand-based approaches use known ligands to define 
their objective functions and measure the fitness of designed 
structures. A representative ligand-based de novo design 
method is TOPAS (TOPology Assigning System), which 
uses 2D fragments derived from known drug molecules and 
an EA method to design molecules similar to a target 
chemical structure [14]. The method, as well as its ancestor 
Flux (Fragment-based Ligand Building reaXions) [9], uses 
retrosynthetic analysis [29] to generate the fragment ‘genes’ 
and keeps information about the type of bonds at each 
attachment point. Candidate compounds are then evolved via 
operations that take into account chemical synthesis rules. 
TOPAS used exclusively mutation in the form of fragment 
substitution. Flux uses a richer collection of genetic 
operators that enable recombination of parent molecules via 
crossover, and changes in the number of fragments a 
molecule contains. In both algorithms the fitness function 
was based on the chemical similarity of the candidate 
compounds to a known active molecule. Certain drug-
likeness rules are taken into account for compound selection. 
A recent application of Flux [30] indicated that the method 
can design compounds with substantial structural differences 
from the initial target thus achieving the so-called scaffold-
hopping goal. Similar approaches have been reported in [10] 
and [21]. 

 Target-based approaches rely on the availability of a 
detailed description of the target receptor of interest to 
design chemical structures predicted to bind well. The 
evaluation of the design products is performed via one or 
more docking/scoring methods that give an indication of the 
likely affinity of each virtual compound to the receptor [6]. 
Search-based optimization methods, such as EAs are 

frequently used, especially in more recent approaches 
reported in the literature, in combination with a virtual 
compound synthesis engine, to design compounds satisfying 
an objective function based on docking [31-33]. 
Alternatively, some methods use the available knowledge on 
the receptor site to identify and characterize its regions that 
can be involved in chemical interactions [13]. Following, an 
incremental construction approach can be used to generate 
virtual compounds through coupling key receptor regions 
with molecular fragments that can theoretically interact and 
form chemical bonds. Special chemical substructures, known 
as linkers, are used to link the molecular fragments taking 
into account geometry considerations. The knowledge of the 
receptor site may also be used to derive a model of 
compounds with predicted binding affinity in which case the 
goal of the de novo design process is to generate compounds 
matching that model. Pro_Ligand used a fragment-based 
approach and a depth-first search method to incrementally 
design ligands fitting a model derived from a target receptor 
site or a collection of highly similar actives [34]. The method 
generates the ligands by matching fragments with the model 
components and constructs virtual molecules using standard 
chemical rules. In later publications the method was 
complemented by a post-processing EA module that further 
evolves the designed compounds using a limited set of 
evolutionary operations [35]. More recently, GARLig 
(Genetic Algorithm using Reagents to compose LIGands) 
proposed a self-adaptive EA for library design that also uses 
docking scores as objective functions [36]. The method 
decorates a given scaffold with fragments also provided as 
input, to design virtual compounds with high predicted 
binding affinity to a target receptor. 

5. MULTI-OBJECTIVE DND METHODS 

 Among the DND methods that recognize the existence of 
multiple objectives several distinct subcategories exist. 
Broadly, these methods can be categorized according to the 
methodology used to address the various objectives. 
Composite methods, representing the overwhelming 
majority, transform the problem into a single-objective one 
by aggregating the multiple objectives into a single one. 
These methods in effect decide on the importance of each 
objective a’ priori and use a prioritization scheme to 
calculate the contribution of each objective to the new one. 
Pareto-based methods attempt to identify compromise 
solutions among the various objectives and thus, avoid the 
problem of having to prioritize the multiple objectives. 
Instead, they produce multiple solutions which they present 
to the end user who can select those matching its 
requirements a’ posteriori. Methods using desirability 
functions which provide a way to reduce objectives relative 
to user specified criteria and thus decrease the complexity of 
the problem have also been used in DND in combination 
with single- and multi-objective optimization methods. In the 
following sections we review these subcategories. A fourth 
section is focusing on interactive, progressive methods 
which give a pivotal role to the expert user who is actively 
engaged in the design process to evaluate and select 
solutions for further optimization. Table 2 presents the 
various categories of multi-objective optimization methods 
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used for DND organized according to the way they handle 
the multiple objectives. 

5.1. Composite Methods  

 A straightforward approach in finding compromise 
solutions when numerous objectives are present is to 
transform the problem to a single-objective one by 
combining the multiple objectives. A common example of 
this approach is the weighted-sum-of-objective-functions 
method where a weight is associated a  priori with each 
objective function and the weighted sum of the functions is 
taken as the new composite fitness function. An advantage of 
using such a scalarized objective function is that the same 
algorithms used for solving single-objective problems can be 
used for multi-objective problems. Drawbacks of the method 
include the need to select appropriate weighting for the 
different objectives even when the relation among them is 
not clear, and, the generation of ‘best’ solutions with no 
associated information of their placement on the Pareto front 
instead of the set of nondominated solutions.  

 One of the first methods using a composite fitness 
function was Chemical Genesis proposed by Glen and Payne 
in 1995 [31]. Their program uses molecular fragments to 
design molecules using a single-objective evolutionary 
algorithm. The fitness function used combines both receptor 
and ligand-based objectives. New chemical structure designs 
are produced through mutation, which allows structural 
modifications such as changing atom and bond types, 
inserting and removing fragments, and, crossover, which 
involves the exchange of fragments between two molecules 
[31]. 

 Douguet et al. [37, 38] also used an EA-based search 
combined with an extensive set of mutation and crossover 
operators, and a set of repair mechanisms to ensure the 
validity of the produced chemical structures representations, 
especially with regard to branching and ring correctness. The 
original method, termed LEA (Ligand by Evolutionary 
Algorithm), represented compounds using the SMILES 

chemical language [39] and used a composite function 
consisting of ligand-based objectives and specifically QSAR 
model predictions. Molecular perturbation took place by 
modifying the SMILES compound representation. In 
subsequent work, LEA3D [38] was introduced which uses a 
pool of 3D fragments combined in a linear fashion. The 
method uses a composite fitness function taking into account 
both receptor and ligand-based constraints. ADAPT [32] 
used an EA to design compounds satisfying a composite 
criterion combining docking scores and simple physical 
properties like molecular weight and number of rotatable 
bonds. The method generated compounds by combining 
fragments from a user-supplied collection using both 
mutation and crossover operations to explore the chemical 
space. Similarly, LigBuilder [40], uses a multi-objective 
composite objective and an EA algorithm to build up ligands 
from a library of organic fragments by using growing and 
linking strategies. The new molecules are evaluated based on 
their binding affinities, estimated through an empirical 
scoring function, and the biological availability, evaluated 
based on a set of chemical rules. 

 An EA algorithm is also used by the method proposed by 
Feher et al. [41] for searching the chemical space. The 
commercially available structure generation program EA-
Inventor [42] implements an evolutionary algorithm to 
generate new chemical structures from a seed set or previous 
generation and is agnostic to the single scoring function 
used. The specific application reviewed used a composite 
scoring function that comprised of the product of individual 
scores including, among others, ligand similarity to reference 
compounds, molecular weight and stereochemistry. 
Designed compounds containing fragments from a user-
defined list of undesirable substructures were eliminated. 
The method was used for the design of selective 
norephinephrine re-uptake inhibitor ligands (SNRI) and 
binders to the gonadotropin releasing hormone (GnRH) 
receptor. 

 NovoFLAP [43] also used the EA-Inventor [42] as its 
chemical synthesis engine. In this implementation,  

Table 2. Approaches Used by Multi-objective DND Methods to Address the Presence of Multiple Objectives 

Multiple Objective Approaches 

Method Type User Interaction Methods Sample Applications 

Weighted-Average: Specification of expert knowledge by 

assignment of weights to objectives; aggregate objectives into a 

single one through linear combination of weighted averages of all 

objectives 

Chemical Genesis [31], LEA [37], 

GANDI [33], FOG [20], PHDD [44] 

A  priori Before optimization 

Desirability: Specification of expert knowledge by assignment of 

desirability to objectives; aggregate objectives into a single one 

through desirability functions 

MOOP-DESIRE [47] 

A  posteriori After optimization 

Pareto-based: Optimization process takes place without usage of 

prior knowledge; produce set of optimal solutions; expert 

knowledge used to select set of desired solutions after optimization 

COG [50], MEGA [1], PLD [55] 

Progressive During optimization 
Interactive: Enable the user to interact with the optimization process 

to guide the search; user acts as the fitness function/scorer.  
MoleculeEvoluator [23], Mobius [56] 
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EA-Inventor uses a fragment library of 1300 fragments 
derived from known drugs and chemical transformation 
operators to generate chemical designs obeying valence 
rules. The new designs are evaluated using FLAP (Flexible 
Ligand Alignment Protocol) which is a composite scoring 
function aggregating measures based on the fit of overall 
molecular shape and pharmacophoric features to reference 
compounds. 

 GANDI (Genetic Algorithm-based de Novo Design of 
Inhibitors) joins a collection of predocked 3D fragments to a 
receptor site with a set of linkers to generate candidate 
molecules [33]. Individuals are represented as simple trees 
whose general shape and structure is restricted by the 
receptor site targeted. The method divides the working 
population into subpopulations and uses a parallel 
evolutionary algorithm with binary tournament selection of 
parents for selecting the predocked fragments and tabu-
search to select the linkers [33]. The scoring function in 
GANDI is a linear combination of terms measuring both 2D 
and 3D properties of an individual.  

 FOG (Fragment Optimized Growth), grows molecules by 
iteratively adding fragments in a statistically biased manner 
that implicitly takes into account the presence of multiple 
design objectives such as similarity to known ligands and 
synthesizability [20]. The algorithm relies on the calculation 
of the transition probabilities of a given growth fragment to 
other fragments in a database. Transition probabilities are 
based on connectivity statistics for fragments of interest from 
collections of small molecules. The selection of an 
appropriate training database of small molecules for 
fragmentation and calculation of connectivity statistics 
enables FOG to generate new compounds in a chemical 
space similar to the compounds in the training set. As 
currently implemented FOG can be incorporated as a 
synthesis engine in more elaborate fragment-based de novo 
design programs or, alternatively, it can be used as a 
standalone program to generate a virtual library of 
compounds of specific classes [20]. In a more recent 
publication, the same group suggested using FOG in 
combination with a composite fitness score mechanism 
which would take into account various objectives (synthetic 
accessibility, drug-likeness, solubility, etc.) to guide the 
search in relevant regions of the search space using an 
evolutionary algorithm [25]. 

 More recently PhDD (Pharmacophore-based De novo 
Design method) has been developed to design new 
molecules based on the requirements of a 3D pharmacophore 
model [44]. The method generates molecules with high 
similarity to known pharmacophores by iteratively 
combining substructures derived from the fragmentation of 
known drugs. The new molecules are scored on their drug-
likeness, bioactivity and synthetic accessibility. Drug-
likeness is evaluated with Lipinski’s rule of five [7] and the 
bioactivity from fitness values calculated according to 
specific formulas that describe the distance between the 
center of the fragment and that of the pharmacophore model. 
Synthetic accessibility is assessed by a complexity method 
that takes into consideration the contribution of rings, 
interatomic connections, atom types and chiral centers.  

 The weighted average approach to combine multiple 
objectives is also used in the Molecular Library Design area. 
A recent example is LoFT (Library optimizer using Feature 
Trees), a tool for focused combinatorial library design that 
uses a weighted multi-objective scoring function [45]. The 
method takes as input a fragment collection and generates 
compound libraries satisfying a composite criterion that 
incorporates consensus similarity scoring to multiple query 
molecules, and, maintains the products within desired 
property ranges. LoFT can use any of a number of 
optimization methods for searching the chemical space. 

5.2. Desirability-Based Methods 

 Desirability-based methods is another approach to multi-
objective optimization, where several variables are optimized 
simultaneously based on desirability functions. This method 
has primarily found applications in the building of QSAR 
models that can eventually serve as fitness functions to direct 
the de novo design of further molecules [46]. Recently, 
MOOP-DESIRE (Multi-Objective Optimization based on 
desirability estimation) was introduced based on which 
multiple objectives are simplified to a single one using 
independent desirability criteria [22, 47]. The MOOP-
DESIRE methodology includes three main steps: 1) 
developing predictive models, 2) obtaining the global 
desirability (Di) from the individual desirability (di) for each 
compound, and for each biological property and 3) using the 
global desirability or the descriptor values as a template for a 
ranking algorithm that will rank new candidates. 

 The MOOP-DESIRE methodology can be applied to the 
screening of large and diverse data (High-Throughput 
Screening) in order to filter out the best ranked drug 
candidates that would combine potency, safety and 
bioavailabitiy. This was exemplified by Cruz-Monteagudo et 
al. who introduced the MOOP-DESIRE methodology. They 
applied this methodology in a global QSAR study that 
simultaneously considered the potency, bioavailability, and 
safety of 95 fluoroquinolines as well as, the analgesic, 
antiinflammatory, and ulcerogenic properties of fifteen 3-(3-
methylphenyl)-2-substituted amino-3H-quinazolin-4-one. 
MOOP-DESIRE based optimization was also performed to a 
set of chlorophenyl derivatives in order to optimize their 
global antifungal profile and provide new chemicals with 
broad antifungal spectrum. Their results pointed to a 
hydroxyl group as being fundamental for the expression of 
antifungal activity [48]. Improvement of selectivity can also 
be achieved by MOOP-DESIRE and this was demonstrated 
by the work of Machado et al. Their study conducted the 
optimization of arylpiperazine derivates, inhibitors of both 5-
HT1A and 5-HT2A serotonin receptors, in terms of 
selectivity and affinity towards the 5-HT2A serotonin 
receptor [49]. 

5.3. Pareto-Based Methods  

 Pareto-based multi-objective optimization has been 
introduced to de novo design with the system proposed by 
Brown et al. [50]. The system, named COG (Compound 
Generator), designs chemical structures using a multi-
objective evolutionary algorithm and scoring functions based 
on similarity calculations to existing molecules of interest. 
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COG operates on a genetic graph molecular representation 
through mutations on both nodes and edges, and crossover. 
The method uses both molecular fragments and atoms/bonds 
as building blocks and imposes no constraint on the size or 
complexity of the chemical structures designed other than 
those required for the graph to represent a valid molecule [8]. 
COG has been applied successfully using quantitative 
structure-property relationship (QSPR) models to calculate 
individual compound fitness [51]. The same group reported 
an extension to this method that in addition to satisfying 
multiple molecular properties paid particular attention in 
designing molecules with structural differences to the query 
molecules [52].  

 The Multi-objective Evolutionary Graph Algorithm 
(MEGA) also operates on a genetic graph molecular 
representation [1]. MEGA combines evolutionary algorithms 
with local search techniques, to enable the use of problem-
specific knowledge during the search and improve 
performance and scalability. The algorithm applies any 
number of objectives on the working population to obtain a 
list of scores for each individual. The list of scores is then 
used for the elimination of solutions with values outside the 
range allowed by the user-defined filters. Individual rank and 
population diversity are given special consideration through 
the implementation of a clustering process operating on the 
chemical structures. Solution generation takes place through 
graph-specific mutation and crossover. It is worth noting that 
MEGA maintains a secondary population, the so-called 
Pareto archive, which enables the preservation of promising 
solutions found throughout evolution and ensures that the 
results of the search process will contain the best solutions 
found. A variation of the method, MEGALib, which operates 
strictly with fragment building blocks and chemical rules for 
molecular synthesis has been used for multi-objective 
molecular library design [53]. The issue of maintaining 
chemical structure diversity among the solutions has also 
been addressed in the work of Kruisselbrink et al. who use a 
crowding operator based on compound similarity 
measurements to ensure the evolution of structurally diverse 
niches of molecules [24].  

 Shin et al. [54] propose an evolutionary multi-objective 
optimization approach for the design of oligonucleotide 
probes. The method initially generates a random population, 
calculates the domination relations and forms an archive 
with the nondominated set. The algorithm then generates 
offspring through variation and selection, and, performs 
maintenance of the Pareto archive and the working 
population until the termination condition is met. In the 
variation step, parent solutions are selected from archive and 
population. Offspring are generated through uniform 
crossover and point mutation. The method, termed 
EvoOligo, has been applied and compared favorably to 
existing approaches to the oligo probe design problem [54]. 

 Ekins et al. (2010) report on the development of the 
Pareto Ligand Designer (PLD) [55]. The method is based on 
the EA-Inventor [42] commercial structure generation tool 
discussed previously, combined with an evolutionary multi-
objective optimization component. At initalization, a set of 
one or more reference molecules is provided as input and the 
optimization objectives are prepared. Next, the dominance 

relations are calculated and the nondominated solutions are 
stored in a Pareto archive. The working population is used 
for reproduction via an extensive set of molecular 
transformations. The resulting new structures are subjected 
to hard filtering to ensure that their structural features and 
property values fall within acceptable ranges. The new 
working population is formed by the molecules that survive 
the filters and the molecules stored in the Pareto archive. 
PLD has been used succesfully in optimization experiments 
to simultaneously improve the predicted values of two, three 
and four objectives, while maintaining biological activity 
[55].  

5.4. Interactive Methods 

 Interactive, or progressive multi-objective optimization 
methods have also been used in the DND field. Two 
independent groups have published their research on the 
design and implementation of software that provides a user-
directed de novo design approach. The MoleculeEvoluator 
[23] represents molecules using the SMILES chemical 
language [39] and emphasizes mutation operations while 
Mobius [56] uses a simple tree representation with molecular 
fragments as building blocks and a predefined blueprint to 
drive the generation of new chemical designs. In effect, the 
blueprint is a recipe for combining fragments to create a 
molecule; it is used specifically to limit the evolutionary 
operations performed and ensure that new structures will 
conform to the desired design. Both tools generate candidate 
compounds for which a variety of properties of 
pharmaceutical interest are calculated. Mobius also offers the 
ability to measure the fitness of the individuals on additional 
objective functions that can be added to the process. 
Selection is left to the user who is expected to visually assess 
the intermediary design products and assign a score for each 
of the candidate molecules based on their expert knowledge, 
taking into account the molecular structure and the 
associated property values calculated previously. In effect, 
the user is the multi-object optimizer and can therefore, 
focus the area of exploration to those regions deemed to be 
of most interest for the particular application [8]. 

 Recently, Kruisselbrink et al. [57] reported an extension 
to the MoleculeEvoluator through a method that combines 
Pareto optimization with desirability indexes to reduce de 
novo design from a many-objective to a multi-objective 
optimization problem with a lower number of objectives. 
The method combines sets of objectives into logical groups 
by means of desirability indexes to obtain a more 
manageable optimization problem. It then applies a multi-
objective EA Pareto optimization method, to generate trade-
off results with reduced computational effort. The method 
has been applied to the design of estrogen receptor 
antagonists.  

6. SUMMARY 

 De novo drug design attempts to generate new drugs 
from scratch using existing information on the biological 
targets or molecules of interest. The approach represents an 
additional effort to identify lead molecules complementary 
to more traditional methods such as biological and virtual 
screening. In this approach, a medicinal chemist is 
confronted with the difficult task of exploring a virtually 
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infinite chemical space, in the order of 10
60

 molecules, and 
come up with lead compounds that are synthesizable, have 
high affinity towards their target and have drug-like 
characteristics. To overcome this obstacle, de novo design 
methods employ chemoinformatics techniques to take into 
account as much biochemical knowledge as possible in the 
form of scoring functions. Most of these functions include 
information on the ligand-receptor interaction (primary 
target constraints) and attempt to approximate the free 
energy of binding between the ligand and the target protein. 
However, an effective drug molecule is subject to more 
objectives than the binding affinity, including favorable 
ADME and toxicity properties, synthetic accessibility and 
target selectivity. This clearly demonstrates the multi-
dimensional optimization character of drug discovery and 
development.  

 The multitude of methods presented above are evidence 
to the interest the DND field has attracted in recent years. 
This growing interest, also represented by the wealth of 
applications reported in the literature, is a result of the 
improvements in the methods used and the quality of the 
results produced. We believe that the recognition of the 
multi-objective nature of the DND problem and the efforts 
that followed to incorporate numerous objectives to the 
design process have also contributed to the improvement of 
the DND track record. However, a number of challenges still 
remain. Prime among them are the development of efficient 
search methods capable of sampling the vast chemical space 
that needs to be explored, and, the synthesizability of the 
chemical structure designs proposed. The importance of the 
aforementioned challenges has already been recognized and 
intense research efforts are taking place to address them. The 
ability to reuse pre-existing relevant information or 
knowledge gained during the optimization process to guide 
the search process, decrease execution time and facilitate the 
discovery of solutions, has not received as much attention. A 
natural way to exploit prior information is through the 
appropriate encoding of available knowledge into 
computational objectives and their inclusion as part of a 
multi-objective optimization process. Monitoring the 
progress of the DND process and assessing the quality of 
solutions produced during optimization may also provide the 
means to identify problem-specific promising regions of the 
chemical space and better focus the search through 
improved, self-adaptive methods. Enhancements in these, as 
well as additional algorithmic domains, are sure to further 
improve DND application performance in the near future and 
contribute to an increased role in the drug discovery field. 
Such development will surely benefit the drug discovery 
process and, in combination with other technological 
advancements, contribute to a reduction of the resources 
required to discover leads and develop successful drugs. 
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